Circular Complex-Valued GMDH-Type Neural Network for Real-Valued Classification Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-layered complex-valued neural network for real-valued classification problems

This paper presents two models of complex-valued neurons (CVNs) for real-valued classification problems, incorporating two newly-proposed activation functions, and presents their abilities as well as differences between them on benchmark problems. In both models, each real-valued input is encoded into a phase between 0 and  of a complex number of unity magnitude, and multiplied by a complex-va...

متن کامل

Fast learning Circular Complex-valued Extreme Learning Machine (CC-ELM) for real-valued classification problems

Article history: Received 9 November 2010 Received in revised form 14 September 2011 Accepted 6 November 2011 Available online 13 November 2011

متن کامل

A Metacognitive Fully Complex Valued Functional Link Network for solving real valued classification problems

In this paper, a sequential learning based meta-cognitive fully complex valued functional link network (Mc-FCFLN) is developed for solving complex real world problems. Mc-FCFLN network consists of two components: a cognitive component and a meta-cognitive one. A fully complex-valued functional link network (FCFLN) is a cognitive component and the self-regulatory learning method is its meta-cogn...

متن کامل

A fully complex-valued radial basis function classifier for real-valued classification problems

In this paper, we investigate the decision making ability of a fully complex-valued radial basis function (FC-RBF) network in solving real-valued classification problems. The FC-RBF classifier is a single hidden layer fully complex-valued neural network with a nonlinear input layer, a nonlinear hidden layer, and a linear output layer. The neurons in the input layer of the classifier employ the ...

متن کامل

A Fully Complex-valued Fast Learning Classifier (FC-FLC) for real-valued classification problems

This paper presents a Fully Complex-valued Fast Learning Classifier (FC-FLC) to solve real-valued classification problems. FC-FLC is a single hidden layer network with a nonlinear input and hidden layer, and a linear output layer. The neurons at the input layer of the FC-FLC employ the circular transformation to convert the real-valued input features to the Complex domain. At the hidden layer, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2020

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2020.2966031